Sea Shepherd joined forces with a group of scientists last month to conduct research on two separate projects off the coast of Mexico: humpback whales and ocean plastics.
From March 8th to the 19th 2017, Sea Shepherd’s R/V Martin Sheen welcomed four scientists under the supervision of Dr. Jorge Urban, from Universidade Autonoma de Baja California Sur (UABCS) and sailed to the remote Archipelago of Revillagigedo for scientific studies.
This archipelago is one of the most important breeding areas in Mexico for the humpback whale, who migrate to the location from various feeding grounds in Alaska and the Bering Sea.
"The humpback population found here demonstrates a high loyalty to this archipelago,” said UABCS’s Pamela Martinez, who was on board the Sheen. “This research project is important to help determine the current conservation status of these whales and to gather information about their migration patterns and migration connections between their feeding and breeding grounds."
The visiting scientists took photographs to identify the individual humpback whales on the archipelago’s Socorro and Clarion Islands. They also took skin and blubber biopsies which helps with determining the gender of the whales along with what they have been eating. Sound recordings of humpback whales were also conducted.
Scientists hope to use the collected data to confirm that these whales are not always migrating in the same patterns. Martinez believes that humpback whales are mostly loyal to their breeding grounds, but not always loyal to their feeding grounds.
While in Revillagigedo, scientists also took water samples to identify if there are any microplastics in the water. Plastic is the most common debris found in Oceans; those less than 5mm are referred to as “microplastics.”
The project continued the work started last year with Sea Shepherd and UABCS in the same area. At the time, scientists discovered the archipelago’s Clarion Island - the one furthest away from land - had the highest concentration of microplastics of all four islands. Last month’s expedition with Sea Shepherd was a follow-up to collect more samples and investigate if this still holds true.
Climate change may be putting cyanobacteria that are crucial to the functioning of the ocean at risk as the amount of carbon dioxide in the atmosphere increases and the acidity of ocean water changes.
In a paper published Thursday in Science, a team of researchers from Florida State University, Xiamen University in China and Princeton University argue that the acidification of seawater caused by rising carbon dioxide levels makes it difficult for a type of cyanobacteria to perform a process called nitrogen fixation.
Few people know much about a type of cyanobacteria called Trichodesmium, but this miniscule collection of cells is critical to the health of hundreds of species in the Earth's oceans. Through nitrogen fixation, Trichodesmium converts nitrogen gas into ammonia and other molecules that organisms are dependent on for survival.
Trichodesmium is thought to be responsible for about 50 percent of marine nitrogen fixation, so a decline in its ability could have a major ripple effect on marine ecosystems.
"This is one of the major sources of nitrogen for other organisms in the open ocean," said Sven Kranz, assistant professor of Earth, Ocean and Atmospheric Science at Florida State University and a co-author of this study. "If Trichodesmium responds negatively to the environmental changes forced upon the ocean by fossil fuel burning, it could have a large effect on our food web."
The effects of climate change on Trichodesmium have been studied extensively by scientists in labs across the globe but with widely different results. Some scientists found that increased carbon dioxide in ocean waters caused a decline in nitrogen fixation, while others saw huge increases. Because of the large role these bacteria play in the health of the Earth's oceans, Kranz and his colleagues sought to resolve the discrepancies.
Some of these discrepancies, they found, are based on the preparation of the water in which these organisms typically grow under laboratory conditions. For example, the researchers found contamination by elements such as ammonia or toxic elements like enhanced copper concentration.
"Any slight differences in the specific ingredients of the water -- in this case artificial seawater that scientists prepare -- can have a huge effect on the outcome," Kranz said.
A slight contamination can throw a huge wrench in the process, yet using this artificial seawater is common because not every lab has access to clean ocean water.
The authors also found that increased carbon dioxide could sometimes stimulate nitrogen fixation but this was offset by the negative effects of the increased ocean acidity.
Kranz began studying how increased carbon dioxide affects cyanobacteria as a researcher in Germany and then as a postdoctoral researcher with François Morel and Dalin Shi at Princeton University. Shi is now at Xiamen University and led the study with his research group there.
For this study, Kranz focused on the preliminary data collections and how the cyanobacteria reacted to changing concentrations of iron and carbon dioxide. Shi's group in China conducted further studies including protein analysis and replicated this work in the field, conducting experiments in the South China Sea in May 2016.
The onset of a Sahelian storm. Credit: Françoise GUICHARD/Laurent KERGOAT/CNRS Photo Library.
The UK-based Centre for Ecology & Hydrology (CEH) has led an international team of scientists who reveal global warming is responsible for a tripling in the frequency of extreme West African Sahel storms observed in just the last 35 years.
Professor Christopher Taylor, a Meteorologist at CEH, and researchers from partner institutions including Universite? Grenoble Alpes in France, also suggest that climate change will see the Sahel experience many more instances of extreme rain in future.
Professor Taylor and the fellow scientists' findings -- published in the journal Nature -- note that further strengthening of intense storms in the Sahel known as Mesoscale Convective Systems (MCSs) will increase the risk of more frequent and severe flooding and disease due to poor sanitation in West African cities. The findings will also this week be presented at the General Assembly of the European Geosciences Union at its meeting in Vienna, Austria.
The Sahelian storms are some of the most explosive storms in the world, containing clouds that can grow to a height of 16km above the ground. In 2009 a downpour of 263mm over several hours forced 150,000 residents of Ouagadougou, in Burkina Faso, to leave their homes. The study, which has analysed trends from 35 years of satellite observations across Africa, provides unique insight into how some of the most violent storms in the world are responding to rising global temperatures.
The research indicates that MCS intensification is linked to increasingly hot conditions in the Sahara desert resulting from man-made greenhouse gas emissions. Saharan warming affects storm intensity across the Sahel, a band of semi-arid land to the south of the desert which is home to some of the most vulnerable populations on the planet.
Professor Taylor, said, "Global warming is expected to produce more intense storms, but we were shocked to see the speed of the changes taking place in this region of Africa."
Co-author Professor Douglas Parker, Professor of Meteorology at the University of Leeds, UK, said, "African storms are highly organised meteorological engines, whose currents extract water from the air to produce torrential rain. We have seen these engines becoming more efficient over recent decades, with resulting increases in the frequency of hazardous events."
The research was funded by the Department for International Development (DFID) Future Climate for Africa programme under the African Monsoon Multidisciplinary Analysis 2050 (AMMA 2050) project and the Natural Environment Research Council (NERC). Institutions involved in the research included the Centre for Ecology and Hydrology, the National Centre for Earth Observation, the University of Leeds as well as those from France: the Centre National de Recherches Meteorologiques, Universite Grenoble Alpes, Universite Paris Diderot and Sorbonne Universite.
The (Amur Tiger) Siberian tiger is an endangered tiger subspecies. Three tiger subspecies are already extinct. Credit: Dave Pape, Associate Professor, University of Buffalo.
A new study indicates that the number of plant and animal species at risk of extinction may be considerably higher than previously thought. A team of researchers, however, believe they've come up with a formula that will help paint a more accurate picture. The study appears in the journal Biological Conservation.
"Concerned about this issue, we aimed to determine how far off those maps were. In doing so, we found there is an enormous amount of freely available data on many species around the world that can be employed to get a better picture of exactly how many species are truly under extreme threat. This picture, grim as it may be, is necessary if we are going to accurately plan the steps needed to stem those threats, locally and globally."
Currently, IUCN makes use of species sightings reported by experts to draw boundaries reflecting the geographic range of a given species. From these maps, the IUCN develops its Red List, which assigns a threat status to wild species: Vulnerable, Endangered, or Critically Endangered. Though the accuracy of threat risk assigned to a species relies heavily on these maps, Melnick and his colleagues believe they almost always overestimate the actual distribution of a species by incorporating areas of unsuitable habitat. This overestimation of range size, in turn, leads to a significant overestimation of population size and therefore an underestimation of extinction risk.
In an effort to determine how exaggerated the IUCN range maps might be, the team analyzed the maps established for 18 endemic bird species with varying IUCN-assigned extinction threat levels inhabiting the Western Ghats mountain chain of southwest India.
Melnick's student, Vijay Ramesh, and two other researchers from India studying in the United States, pored over data from the world's largest citizen science database (eBird), and also gathered freely available and geo-referenced data on the climate, vegetation, ecology, and geo-physical attributes of the Western Ghats. The team then used local experts to sift through those data and verify their accuracy. By bringing together carefully curated citizen science data on the sightings of each species with the other data types, they were able to build a profile of where each species is likely to be found - at what elevation, at what temperature range, in what types of vegetation, etc. This allowed them to estimate new geographic ranges for each species that they believe are much more accurate than the IUCN range maps.
The new range estimates from the Columbia study revealed that the IUCN maps for 17 of the 18 bird species contained large areas of unsuitable habitat and vastly overestimated their ranges. By extension, the threat levels which are correlated to species range size are probably underestimated, Melnick said, and the study suggests that IUCN threat status for at least 10 of the 18 species should be elevated.
"We were extremely surprised by how much the IUCN ranges overestimated what we deem the true ranges to be," he added. "In a number of cases the ranges were overestimated by an order of magnitude. The drastic reduction in range size and the increased habitat fragmentation that our study indicates leads us to infer that there is a much greater threat to these endemic birds than was ever imagined."
The study points to a new way of estimating species ranges for conservation purposes, Melnick said, adding that the use of freely available, digitized, and geo-referenced citizen science data, along with biological and geophysical data, and sophisticated statistical modeling can and should be applied to plant and animal species around the globe so that IUCN can more accurately assess the threat to species worldwide.
"IUCN's criteria for establishing threat levels for species are excellent; however, the data to which those criteria are being applied need to be updated using an approach like the one we have developed for the Western Ghats," Melnick said. "By using citizen science data in a careful way, we may find there is an urgent need to start protecting species we thought were flourishing but are actually in danger of spiraling toward extinction."
Marine circulation and weather conditions greatly affect microplastic aggregation and movement. Microplastics, which are particles measuring less than 5 mm, are of increasing concern. They not only become more relevant as other plastic marine litter breaks down into tiny particles, they also interact with species in a range of marine habitats. A study by Natalie Welden and Amy Lusher published in Integrated Environmental Assessment and Management, takes a look at how global climate change and the impact of changing ocean circulation affects the distribution of marine microplastic litter. It is part of a special invited section on microplastics.
Natalie Welden of Open University and lead author of the paper notes, "The ability to predict areas of plastic input and deposition would enable the identification of at risk species, and it would allow for efforts to reduce and remove plastic debris at targeted locations. The current uncertainty as to the effects of global warming on our oceans is the greatest challenge in predicting the future patterns of plastic aggregation in relation to global circulation."
Littering, landfill runoff and loss at sea are the main pathways through which plastics enter the ocean. It is estimated that plastic waste from coastal countries will increase nearly 20-fold by 2025. The density of the plastic determines if it remains in surface waters, becomes beached in coastal areas and estuaries, or sinks to deep-sea sediments. Further, weather conditions and marine circulation play a significant role in the distribution. For example, the circular systems of ocean currents, such as the Gulf Stream in the North Atlantic or the California Current in the Pacific, play a significant role in the movement of plastics from their point of release to remote areas where they can accumulate in central ocean regions called gyres. Unusual large amounts of marine debris have been found in these zones, such as the North Atlantic or Great Pacific garbage patches.
However, our oceans are currently undergoing a marked period of uncertainty brought about by global climate change. For example, ice melts in polar regions is predicted to have a range of effects on the distribution on marine plastics. As many swimmers know, it is easier to float in saltwater than a swimming pool. Reduction in the density of seawater at sites of freshwater input is expected to reduce the relative buoyancy of marine debris, increasing the rate at which plastics sink. Correspondingly, areas of high evaporation, due to the increase in temperature, will experience increased water densities, resulting in plastics persisting in the water column and surface waters.
Adding another layer of complexity, changes in sea surface temperature may also affect the scale and patterns of precipitation, in particular tropical storms, cyclones and tornadoes. Global warming intensifies along-shore wind stress on the ocean surface. Flooding events, intense storms and increasing sea levels also means that more debris littering shorelines will become available for transport in the seas.
"The hope is that future models of climate-ocean feedback are producing more accurate predictions of circulation patterns," said Welden. "This is vital in forecasting and mitigating potential microplastic hotspots and 'garbage patches'."
Healthy Elkhorn coral (Acropora palmata) near unpopulated Buck Island, US Virgin Islands. Elkhorn coral is one of many important reef-building species that create 3-D structure on the seafloor. Coral reef structure provides habitat for marine life and helps break up waves as they approach the coastline. Credit: Curt Storlazzi, USGS.
In the first ecosystem-wide study of changing sea depths at five large coral reef tracts in Florida, the Caribbean and Hawai'i, researchers found the sea floor is eroding in all five places, and the reefs cannot keep pace with sea level rise. As a result, coastal communities protected by the reefs are facing increased risks from storms, waves and erosion. The study, by the US Geological Survey (USGS), is published today in Biogeosciences, a journal of the European Geosciences Union.
At two sites in the Florida Keys, two in the US Virgin Islands, and in waters surrounding the Hawaiian island of Maui, coral reef degradation has caused sea floor depths to increase and sand and other sea floor materials to erode over the past few decades, the Biogeosciences study found. In the waters around Maui, the sea floor losses amounted to 81 million cubic meters of sand, rock and other material - about what it would take to fill up the Empire State Building 81 times, or an Olympic swimming pool about 32,000 times, the USGS researchers calculated.
As sea levels rise worldwide due to climate change, each of these ecologically and economically important reef ecosystems is projected to be affected by increasing water depths. The question of whether coral colonies can grow fast enough to keep up with rising seas is the subject of intense scientific research.
But the USGS study, published on April 20, 2017 in the journal Biogeosciences, found the combined effect of rising seas and sea floor erosion has already increased water depths more than what most scientists expected to occur many decades from now. Other studies that do not factor in sea floor erosion have predicted seas will rise by between 0.5 and 1 metre by 2100.
"Our measurements show that seafloor erosion has already caused water depths to increase to levels not predicted to occur until near the year 2100," said biogeochemist Kimberly Yates of the USGS' St. Petersburg Coastal and Marine Science Center, the study's lead author. "At current rates, by 2100 sea floor erosion could increase water depths by two to eight times more than what has been predicted from sea level rise alone."
The study did not determine specific causes for the sea floor erosion in these coral reef ecosystems. But the authors pointed out that coral reefs worldwide are declining due to a combination of forces, including natural processes, coastal development, overfishing, pollution, coral bleaching, diseases and ocean acidification (a change in seawater chemistry linked to the oceans' absorption of more carbon dioxide from the atmosphere).
This Elkhorn coral (Acropora palmata) near Buck Island, US Virgin Islands has died and collapsed. As coral reef structure degrades, valuable habitat for marine life is lost and nearby coastlines become more susceptible to storms, waves and erosion. Credit: Curt Storlazzi, USGS.
For each of the five coral reef ecosystems, the team gathered detailed sea floor measurements from the National Oceanic and Atmospheric Administration taken between 1934 and 1982, and also used surveys done from the late 1990s to the 2000s by the USGS Lidar Program and the US Army Corps of Engineers. Until about the 1960s sea floor measurements were done by hand, using lead-weighted lines or sounding poles with depth markings. From approximately the 1960s on, most measurements were based on the time it takes an acoustic pulse to reach the sea floor and return. The USGS researchers converted the old measurements to a format comparable with recent lidar data.
They compared the old and new sets of measurements to find the mean elevation changes at each site. The method has been used by the US Army Corps of Engineers to track other kinds of sea floor changes, such as shifts in shipping channels. This is the first time it has been applied to whole coral reef ecosystems. Next the researchers developed a computer model that used the elevation changes to calculate the volume of sea floor material lost.
They found that, overall, sea floor elevation has decreased at all five sites, in amounts ranging from 0.09 metres to 0.8 metres. All five reef tracts also lost large amounts of coral, sand, and other sea floor materials to erosion.
"We saw lower rates of erosion--and even some localised increases in seafloor elevation--in areas that were protected, near refuges, or distant from human population centers," Yates said. "But these were not significant enough to offset the ecosystem-wide pattern of erosion at each of our study sites."
Worldwide, more than 200 million people live in coastal communities protected by coral reefs, which serve as natural barriers against storms, waves and erosion. These ecosystems also support jobs, provide about one-quarter of all fish harvests in the tropical oceans, and are important recreation and tourism sites.
"Coral reef systems have long been recognised for their important economic and ecological value," said John Haines, Program Coordinator of the USGS Coastal and Marine Geology Program. "This study tells us that they have a critical role in building and sustaining the physical structure of the coastal seafloor, which supports healthy ecosystems and protects coastal communities. These important ecosystem services may be lost by the end of this century, and nearby communities may need to find ways to compensate for these losses."
The study brought together ecosystem scientists and coastal engineers, who plan to use the results to assess the risks to coastal communities that rely on coral reefs for protection from storms and other hazards.
Increasing water temperatures are responsible for the accumulation of a chemical called nitrite in marine environments throughout the world, a symptom of broader changes in normal ocean biochemical pathways that could ultimately disrupt ocean food webs, according to new research from the University of Georgia.
Nitrite is produced when microorganisms consume ammonium in waste products from fertilizers, treated sewage and animal waste. Too much nitrite can alter the kinds and amounts of single-celled plants living in marine environments, potentially affecting the animals that feed on them, said James Hollibaugh, co-author of the study published recently in Environmental Science and Technology. It also could lead to toxic algal blooms and create dead zones where no fish or animals can live.
"Rising ocean temperatures are changing the way coastal ecosystems--and probably terrestrial ecosystems, too--process nitrogen," said Hollibaugh, Distinguished Research Professor of Marine Sciences in UGA's Franklin College of Arts and Sciences. "Much of the global nitrogen cycle takes place in the coastal zone."
Hollibaugh and researcher Sylvia Schaefer found midsummer peaks in concentrations of nitrite alongside massive increases in numbers of the microorganisms that produce it in the coastal waters off Sapelo Island, Georgia, in data collected over the course of eight years. Although most researchers believe nitrite accumulation is a consequence of oxygen deficiency in a marine environment, Hollibaugh and Schaefer thought something else had to be driving the accumulation.
"The paradigm taught when I was in school was that hypoxia, or lack of oxygen, results in nitrite accumulation," Hollibaugh said. "But the Georgia coast does not go hypoxic. It just didn't fit."
After performing lab experiments that exposed the single-celled organisms known as Thaumarchaea to varying water temperatures, the researchers discovered that higher temperatures prompted the microorganisms to produce more nitrite.
"The microorganisms involved in this process are very tolerant to low oxygen levels," Schaefer said. "Typically, two groups of microorganisms work in really close concert with one another to convert ammonium to nitrate so that you don't see nitrite really accumulate at all, but we found that the activity of those two groups was decoupled as a result of the increased water temperatures."
To see if the pattern held beyond the island, Schaefer and Hollibaugh analyzed environmental monitoring data from 270 locations across the U.S., France and Bermuda, ultimately affirming the relationship between higher temperatures and nitrite accumulation.
This dependence on temperature wasn't appreciated by the research community until now, and it can have widespread consequences even beyond coastal water quality management, Hollibaugh said.
"The same process, though we didn't look at it specifically, takes place in regards to fertilizing soil for agricultural purposes," he said. "It affects farmers and their efficient use of fertilizer--when they should apply it and what form it should be in--and ultimately much of that fertilizer will end up in the waterways, which can lead to algal blooms that choke out other species."
Nitrite accumulation can also result in more production of nitrous oxide, a powerful greenhouse gas that has more of an effect on climate change per molecule than carbon dioxide, Hollibaugh said. That nitrous oxide production then increases global temperatures more, causing more nitrite accumulation and creating a positive feedback loop.
"If you live on a marsh and look out over the water, you're probably not going to notice it, but if you like shellfish, like to fish, like recreational water sports, then these findings do matter," Hollibaugh said. "The information gained from monitoring programs, like the ones we used to analyze temperature and nitrite data across the country and in other countries, can be used not only to forecast what is going to happen down the road and the longer-term consequences of management decisions, but also to come up with potential solutions for the problem. The data collected by these programs are important for wise management of our resources."
March for Science is a series of rallies and marches set to be held in Washington, D.C. and over 500 cities across the world on April 22, 2017. March for Science is a celebration of science. It's not only about scientists and politicians; it is about the very real role that science plays in each of our lives and the need to respect and encourage research that gives us insight into the world. It is the first step of a global movement to defend the vital role science plays in our health, safety, economies, and governments.
“The goal of the march is to get people excited about the role of science in society and ready to agitate for science in policy. We want to channel that passion into a lasting movement that breaks down the barriers between scientists and their communities.” Caroline Weinberg, national co-chair of the march and a health educator and advocate, said in an interview with the Scientific American.
Ocean Current Dumps Plastic in Remote Arctic Waters: The Arctic Ocean is a dead-end for plastics floating in the North Atlantic, a new study reports. The study confirms that plastics are abundant and widespread in seas east of Greenland and north of Scandinavia, even though human populations - contributors of plastic waste - are low there. The results stress the importance of properly managing plastic litter at its source, because once it enters the ocean, its destination can be unpredictable.
Historically semi-closed seas with high surrounding populations, like the Mediterranean Sea, have exhibited excess buildups of plastic debris. Such buildup has not been expected to accumulate in waters at polar latitudes, however, as they largely lack nearby pollution sources. During a 2013 Tara Oceans circumpolar expedition, Andrés Cózar et al. used nets to collect floating plastic debris, including fishing lines and a variety of plastic films, fragments and granules. Most of the ice-free surface waters in the Arctic Polar Circle were only slightly polluted with plastic debris, they report. However, plastic debris was plentiful in the Greenland and Barents Seas. Hundreds of tons of plastic fragments (with average values similar to those in areas of plastic pileup closer to the equator) were estimated from surface waters alone, and even more debris is likely on the seafloor below, the authors say. The proportion of film-type plastic in their samples supported the hypothesis that the plastic had largely traveled from distant sources, including the coasts of northwest Europe, the U.K. and the east coast of the U.S., though some could be sourced to local shipping activity.
The researchers followed the pathway of plastic in the North Atlantic Ocean using 17,000 satellite buoys, confirming the pollution flows poleward via the thermohaline circulation, a current known as the global ocean conveyer belt. Though the study concluded Arctic floating plastic currently accounts for less than 3% of the global total, this current will cause plastic to continuously accumulate as pollution from lower latitudes flows upward. The authors say the potential effects of this pollution flow on the Arctic's unique ecosystem are especially concerning.
GEOMAR researchers publish long-term observational data from the Labrador Sea.
The research vessel MARIA S. MERIAN at the west coast of Greeland. Photo: Rainer Zantopp, GEOMAR.
Mild winters in northern Europe, rainfall in western Africa, hurricanes in North America -the energy transported around the world by the global ocean circulation affects the climate as well as regional weather phenomena. One of the key regions for the ocean circulation is the Labrador Sea between North America and Greenland. There warm, saline waters coming from the south near the sea surface cool down and sink to the depth. There the water masses flow back to the south along the continental margin. Thereby the area is one of the regions of crucial importance for the global ocean circulation.
At the southern exit of the Labrador Sea, the GEOMAR Helmholtz Center for Ocean Research Kiel has been operating oceanographic observatories since 1997 that cover all levels of this current system. A team of four oceanographers now published the most complete analysis of these data in the Journal of Geophysical Research Oceans. "We were able to detect connections between the southward deep currents and the wind systems over the North Atlantic which were previously unknown," says lead author Rainer Zantopp of GEOMAR.
The research vessel METEOR. Foto: Hermann Bange, GEOMAR.
GEOMAR's oceanographic observatories are located at 53° North on the western boundary of the Labrador Sea. They consist of a series of current meters and sensors for temperature and salinity attached to chains and steel cables. Anchor weights at the lower end hold these so-called moorings in place while buoyant flotation pull the other end towards the surface. "This allows us to measure the currents from just below the surface to just above the ground," explains Rainer Zantopp. In addition, the study is based on data collected by the researchers during a total of 13 scientific cruises in the area between 1996 and 2014, mainly with the German research vessels METEOR and MARIA S. MERIAN, as well as with the French research vessel THALASSA.
The analysis showed that the southward deep currents along the western boundary of the Atlantic have fluctuations on different time scales. The authors were especially surprised by the deepest current near the ocean floor. "Although it is more steady than those at the upper levels, it varies with an almost ten-year period," Rainer Zantopp says.
Further analysis showed that the fluctuations of the deepest flow are synchronous with those of wind systems over the North Atlantic which are influenced by the pressure difference between the Azores high and the Iceland low. The indicator is called the North Atlantic Oscillation (NAO). "The intensity of the deepest southward current from the Labrador Sea shows similar fluctuations as the NAO", explains Rainer Zantopp. "We were somewhat surprised to find the signal so clearly in our measurement data."
The French research vessel THALASSA in St. John's (Newfoundland). Photo: Ann Katrin Seemann.
These results from oceanographic long-term observations are of great importance for general climate research. "The better we understand the interactions between the ocean and the atmosphere, the more reliably we can distinguish natural variabilities and man-made changes and thus make better predictions about future developments," emphasizes Rainer Zantopp.